考研幫 > 數(shù)學 > 復(fù)習經(jīng)驗

考研數(shù)學:函數(shù)連續(xù)與間斷,誰說了算?

  摘要:連續(xù)是我們微積分學中,對極限的第一個應(yīng)用。從它字面意思或是深入到幾何意義就是說,函數(shù)的圖像是連續(xù)不斷的。在考研中,連續(xù)會在選擇填空中單獨考察或與其他函數(shù)知識結(jié)合綜合考察,在大題中對于函數(shù)連續(xù)的考察也很多見。

  首先,所謂連續(xù)即“極限值=函數(shù)值”,這一個等式包含了三個方面,1、函數(shù)必須在該點處有定義;2、函數(shù)必須在這個點附近存在極限;3、是前面1、2兩點的內(nèi)容必須相等,同時滿足這三個條件,才叫做函數(shù)在某點處連續(xù)??吹剑袛嗪瘮?shù)連續(xù),要先求極限,所以,如何求函數(shù)在該點處的極限值或是用極限存在的充要條件(左右極限存在且相等),是一個隱含的知識點。
  其次,我們自然會問,會不會有不連續(xù)的點呢?答案當然是肯定的,不連續(xù)的點就是我們所說的---間斷點。那么所謂“不連續(xù)”就是不能同時滿足連續(xù)的三個條件的點,即1、函數(shù)在該點處沒有定義;2、若函數(shù)在該點有定義,但函數(shù)在該點附近的極限不存在;3、雖然函數(shù)在該點處有定義,極限也存在,但是二者不相等。
  對于間斷點,根據(jù)左右極限存在與否,我們把它分為兩類。若左右極限都存在的間斷點,稱為第一類間斷點;若左右極限相等,這個間斷點稱為第一類間斷點中的可去間斷點;若左右極限不相等,這個間斷點稱為第一類間斷點中的跳躍間斷點。若左右極限中至少有一個不存在(包含極限等于無窮的情形)的間斷點,稱為第二類間斷點;若其中一個極限是趨于無窮的,這個間斷點就稱為無窮間斷點;若極限是在兩個常數(shù)之間來回振蕩的,就稱為振蕩間斷點。
  最后,對于連續(xù)性最重要的應(yīng)用或者是說考研中的一個小難點,就是閉區(qū)間上連續(xù)函數(shù)的三個性質(zhì):最大最小值定理、零點定理、介值定理。
  對于上面的知識點,我們看看在考研中是怎么考察的。對于連續(xù)的概念,難度上屬于簡單知識點。首先,在十五年前,對于連續(xù)性的考查,更多的是給一個分段函數(shù),然后判斷分段點處函數(shù)的連續(xù)性,這是一個基本題型,只需判斷連續(xù)的三個條件即可,其實主要是考查求函數(shù)某點處左右極限的值。然后,進入20世紀,考查又傾向于在選擇題當中,給一個函數(shù),讓大家來判斷這個函數(shù)有多少間斷點,間斷點的類型是什么,這個又比之前考查的更高一層。最后,就是在邏輯推理題中,考查零點定理,介值定理,通常,考查介值定理的時候也會用到最值定理。我們歸納題型知道,判斷方程根的情況的時候,一般用零點定理;題干中包含好幾個函數(shù)值相加的時候,一般用介值定理。具體在證明題中怎么用,我們會在專門的證明題專題中講解。
  上面是對連續(xù)概念本身做出的分析。還有連續(xù)與極限存在,可導,可微的關(guān)系也是選擇題中考查的熱點,這個我們在后續(xù)一元函數(shù)導函數(shù)中詳細說明。最后希望本文對同學們的學習能起到幫助。

【精品閱讀】
高數(shù)大題級數(shù)難點規(guī)劃
概率論部分復(fù)習全規(guī)劃
過來人教你如何死磕考研數(shù)學
一站式解決考研數(shù)學難題

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"15名研友在考研幫APP發(fā)表了觀點

掃我下載考研幫

考研幫地方站更多

你可能會關(guān)心:

來考研幫提升效率

× 關(guān)閉