【摘要】在高等數(shù)學(xué)內(nèi)容中,七大中值定理(零點(diǎn)定理、介值定理、三大微分中值定理、泰勒定理與積分中值定理)是學(xué)生在學(xué)習(xí)過(guò)程中認(rèn)為最難的部
作者
佚名
【摘要】在高等數(shù)學(xué)內(nèi)容中,七大中值定理(零點(diǎn)定理、介值定理、三大微分中值定理、泰勒定理與積分中值定理)是學(xué)生在學(xué)習(xí)過(guò)程中認(rèn)為最難的部分。七大定理的難主要 在于難理解、難應(yīng)用。在歷次考試,包括研究生入學(xué)考試中,與中值有關(guān)的問(wèn)題一直是考試中得分最少的題,我們應(yīng)如何更好的理解與掌握定理,靈活有效的使用定 理?本文就給各位考研er總結(jié)一下。
第一,七大定理的歸屬。
零點(diǎn)定理與介值定理屬于閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。三大中值定理與泰勒定理同屬于微分中值定理,并且所包含的內(nèi)容遞進(jìn)。積分中值定理屬于積分范疇,但其實(shí)也是微分中值定理的推廣。
第二,對(duì)使用每個(gè)定理的體會(huì)。
學(xué)生在看到題目時(shí),往往會(huì)知道使用某個(gè)中值定理,因?yàn)檫@些問(wèn)題有個(gè)很明顯的特征—含有某個(gè)中值。關(guān)鍵在于是對(duì)哪個(gè)函數(shù)在哪個(gè)區(qū)間上使用哪個(gè)中值定理。
1、使用零點(diǎn)定理問(wèn)題的基本格式是“證明方程f(x)=0在a,b之間有一個(gè)(或者只有一個(gè))根”。從題目中我們一目了然,應(yīng)當(dāng)是對(duì)函數(shù)f(x)在區(qū)間[a,b]內(nèi)使用零點(diǎn)定理。應(yīng)當(dāng)注意的是零點(diǎn)定理只能說(shuō)明零點(diǎn)在某個(gè)開(kāi)區(qū)間內(nèi),當(dāng)要求說(shuō)明根在某個(gè)閉區(qū)間或者半開(kāi)半閉區(qū)間內(nèi)時(shí),需要對(duì)這些端點(diǎn)做例外說(shuō)明。
2、介值定理問(wèn)題可以化為零點(diǎn)定理問(wèn)題,也可以直接說(shuō)明,如“證明在(a,b)內(nèi)存在ξ,使得f(ξ)=c”,僅需要說(shuō)明函數(shù)f(x)在[a,b]內(nèi)連續(xù),以及c位于f(x)在區(qū)間[a,b]的值域內(nèi)。
3、用微分中值定理說(shuō)明的問(wèn)題中,有兩個(gè)主要特征:含有某個(gè)函數(shù)的導(dǎo)數(shù)(甚至是高階導(dǎo)數(shù))、含有中值(也可能有多個(gè)中值)。應(yīng)用微分中值定理主要難點(diǎn)在于構(gòu)造適當(dāng)?shù)暮瘮?shù)。在微分中值定理證明問(wèn)題時(shí),需要注意下面幾點(diǎn):
(1)當(dāng)問(wèn)題的結(jié)論中出現(xiàn)一個(gè)函數(shù)的一階導(dǎo)數(shù)與一個(gè)中值時(shí),肯定是對(duì)某個(gè)函數(shù)在某個(gè)區(qū)間內(nèi)使用羅爾定理或者拉格朗日中值定理;
?。?)當(dāng)出現(xiàn)多個(gè)函數(shù)的一階導(dǎo)數(shù)與一個(gè)中值時(shí),使用柯西中值定理,此時(shí)找到函數(shù)是最主要的;
?。?)當(dāng)出現(xiàn)高階導(dǎo)數(shù)時(shí),通常歸結(jié)為兩種方法,對(duì)低一階的導(dǎo)函數(shù)使用三大微分中值定理、或者使用泰勒定理說(shuō)明;
(4)當(dāng)出現(xiàn)多個(gè)中值點(diǎn)時(shí),應(yīng)當(dāng)使用多次中值定理,在更多情況下,由于要求中值點(diǎn)不一樣,需要注意區(qū)間的選擇,兩次使用中值定理的區(qū)間應(yīng)當(dāng)不同;
?。?)使用微分中值定理的難點(diǎn)在于如何構(gòu)造函數(shù),如何選擇區(qū)間。對(duì)此我的體會(huì)是應(yīng)當(dāng)從需要證明的結(jié)論入手,對(duì)結(jié)論進(jìn)行分析。我們總感覺(jué)證明題無(wú)從下手,我認(rèn)為證明題其實(shí)不難,因?yàn)樽C明題的結(jié)論其實(shí)是對(duì)你的提示,只要從證明結(jié)論入手,逐步分析,必然會(huì)找到證明方法。
4、積分中值定理其實(shí)是微分中值定理的推廣,對(duì)變上限函數(shù)使用微分中值定理或者泰勒定理就可以得到積分中值定理甚至類(lèi)似于泰勒定理的形式。因此看到有積分形式,并且?guī)в兄兄档淖C明題時(shí),一定是對(duì)某個(gè)變上限積分在某點(diǎn)處展開(kāi)為泰勒展開(kāi)式或者直接使用積分中值定理。當(dāng)證明結(jié)論中僅有積分與被積函數(shù)本身時(shí),一般使用積分中值定理;當(dāng)結(jié)論中有積分與被積函數(shù)的導(dǎo)數(shù)時(shí),一般需要展開(kāi)變上限積分為泰勒展開(kāi)式。
(實(shí)習(xí)編輯:劉明忠)
【小編推薦】
關(guān)于考研幫會(huì)員,現(xiàn)在購(gòu)買(mǎi)還可以享受打包優(yōu)惠,9月1日后就只能分科購(gòu)買(mǎi)了,需要的幫粉們抓緊動(dòng)手吧!>>>點(diǎn)擊了解詳情
關(guān)于"最后階段,真題的正確打開(kāi)方式_備考經(jīng)驗(yàn)_考研幫"有15名研友在考研幫APP發(fā)表了觀點(diǎn)
掃我下載考研幫
最新資料下載
2021考研熱門(mén)話題進(jìn)入論壇
考研幫地方站更多
你可能會(huì)關(guān)心:
來(lái)考研幫提升效率