考研幫 > 專業(yè)課 > 復(fù)習(xí)經(jīng)驗(yàn)

信號(hào)與系統(tǒng):傅里葉變換有什么意義

摘要:在信號(hào)與系統(tǒng)學(xué)習(xí)中,傅里葉變換貫穿于整個(gè)知識(shí)體系。那么傅里葉變換有什么,為什么要做傅里葉變換?考研幫攜手2016大綱解析人第一時(shí)間解讀大綱,點(diǎn)擊免費(fèi)報(bào)名
 

 


  ?為什么要進(jìn)行傅里葉變換,其物理意義是什么?
  傅立葉變換是數(shù)字信號(hào)處理領(lǐng)域一種很重要的算法。要知道傅立葉變換算法的意義,首先要了解傅立葉原理的意義。傅立葉原理表明:任何連續(xù)測量的時(shí)序或信號(hào),都可以表示為不同頻率的正弦波信號(hào)的無限疊加。而根據(jù)該原理創(chuàng)立的傅立葉變換算法利用直接測量到的原始信號(hào),以累加方式來計(jì)算該信號(hào)中不同正弦波信號(hào)的頻率、振幅和相位。
  和傅立葉變換算法對應(yīng)的是反傅立葉變換算法。該反變換從本質(zhì)上說也是一種累加處理,這樣就可以將單獨(dú)改變的正弦波信號(hào)轉(zhuǎn)換成一個(gè)信號(hào)。因此,可以說,傅立葉變換將原來難以處理的時(shí)域信號(hào)轉(zhuǎn)換成了易于分析的頻域信號(hào)(信號(hào)的頻譜),可以利用一些工具對這些頻域信號(hào)進(jìn)行處理、加工。最后還可以利用傅立葉反變換將這些頻域信號(hào)轉(zhuǎn)換成時(shí)域信號(hào)。

  從現(xiàn)代數(shù)學(xué)的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個(gè)函數(shù)表示成正弦基函數(shù)的線性組合或者積分。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。
  在數(shù)學(xué)領(lǐng)域,盡管最初傅立葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特征。"任意"的函數(shù)通過一定的分解,都能夠表示為正弦函數(shù)的線性組合的形式,而正弦函數(shù)在物理上是被充分研究而相對簡單的函數(shù)類:1.傅立葉變換是線性算子,若賦予適當(dāng)?shù)姆稊?shù),它還是酉算子;2.傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;3.正弦基函數(shù)是微分運(yùn)算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解.在線性時(shí)不變雜的卷積運(yùn)算為簡單的乘積運(yùn)算,從而提供了計(jì)算卷積的一種簡單手段;5.離散形式的傅立葉的物理系統(tǒng)內(nèi),頻率是個(gè)不變的性質(zhì),從而系統(tǒng)對于復(fù)雜激勵(lì)的響應(yīng)可以通過組合其對不同頻率正弦信號(hào)的響應(yīng)來獲取;4.著名的卷積定理指出:傅立葉變換可以化復(fù)變換可以利用數(shù)字計(jì)算機(jī)快速的算出(其算法稱為快速傅立葉變換算法(FFT))。
  正是由于上述的良好性質(zhì),傅里葉變換在物理學(xué)、數(shù)論、組合數(shù)學(xué)、信號(hào)處理、概率、統(tǒng)計(jì)、密碼學(xué)、聲學(xué)、光學(xué)等領(lǐng)域都有著廣泛的應(yīng)用

  ?圖像傅立葉變換的物理意義
  圖像的頻率是表征圖像中灰度變化劇烈程度的指標(biāo),是灰度在平面空間上的梯度。如:大面積的沙漠在圖像中是一片灰度變化緩慢的區(qū)域,對應(yīng)的頻率值很低;而對于地表屬性變換劇烈的邊緣區(qū)域在圖像中是一片灰度變化劇烈的區(qū)域,對應(yīng)的頻率值較高。傅立葉變換在實(shí)際中有非常明顯的物理意義,設(shè)f是一個(gè)能量有限的模擬信號(hào),則其傅立葉變換就表示f的譜。從純粹的數(shù)學(xué)意義上看,傅立葉變換是將一個(gè)函數(shù)轉(zhuǎn)換為一系列周期函數(shù)來處理的。從物理效果看,傅立葉變換是將圖像從空間域轉(zhuǎn)換到頻率域,其逆變換是將圖像從頻率域轉(zhuǎn)換到空間域。換句話說,傅立葉變換的物理意義是將圖像的灰度分布函數(shù)變換為圖像的頻率分布函數(shù),傅立葉逆變換是將圖像的頻率分布函數(shù)變換為灰度分布函數(shù)。

  傅立葉變換以前,圖像(未壓縮的位圖)是由對在連續(xù)空間(現(xiàn)實(shí)空間)上的采樣得到一系列點(diǎn)的集合,我們習(xí)慣用一個(gè)二維矩陣表示空間上各點(diǎn),則圖像可由z=f(x,y)來表示。由于空間是三維的,圖像是二維的,因此空間中物體在另一個(gè)維度上的關(guān)系就由梯度來表示,這樣我們可以通過觀察圖像得知物體在三維空間中的對應(yīng)關(guān)系。為什么要提梯度?因?yàn)閷?shí)際上對圖像進(jìn)行二維傅立葉變換得到頻譜圖,就是圖像梯度的分布圖,當(dāng)然頻譜圖上的各點(diǎn)與圖像上各點(diǎn)并不存在一一對應(yīng)的關(guān)系,即使在不移頻的情況下也是沒有。傅立葉頻譜圖上我們看到的明暗不一的亮點(diǎn),實(shí)際上圖像上某一點(diǎn)與鄰域點(diǎn)差異的強(qiáng)弱,即梯度的大小,也即該點(diǎn)的頻率的大?。梢赃@么理解,圖像中的低頻部分指低梯度的點(diǎn),高頻部分相反)。一般來講,梯度大則該點(diǎn)的亮度強(qiáng),否則該點(diǎn)亮度弱。這樣通過觀察傅立葉變換后的頻譜圖,也叫功率圖,我們首先就可以看出,圖像的能量分布,如果頻譜圖中暗的點(diǎn)數(shù)更多,那么實(shí)際圖像是比較柔和的(因?yàn)楦鼽c(diǎn)與鄰域差異都不大,梯度相對較小),反之,如果頻譜圖中亮的點(diǎn)數(shù)多,那么實(shí)際圖像一定是尖銳的,邊界分明且邊界兩邊像素差異較大的。對頻譜移頻到原點(diǎn)以后,可以看出圖像的頻率分布是以原點(diǎn)為圓心,對稱分布的。將頻譜移頻到圓心除了可以清晰地看出圖像頻率分布以外,還有一個(gè)好處,它可以分離出有周期性規(guī)律的干擾信號(hào),比如正弦干擾,一副帶有正弦干擾,移頻到原點(diǎn)的頻譜圖上可以看出除了中心以外還存在以某一點(diǎn)為中心,對稱分布的亮點(diǎn)集合,這個(gè)集合就是干擾噪音產(chǎn)生的,這時(shí)可以很直觀的通過在該位置放置帶阻濾波器消除干擾。

 ?。▽?shí)習(xí)編輯:張嘉琪)

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗(yàn)_考研幫"15名研友在考研幫APP發(fā)表了觀點(diǎn)

掃我下載考研幫

考研幫地方站更多

你可能會(huì)關(guān)心:

來考研幫提升效率

× 關(guān)閉